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PREFACE

The characteristics of the wind near the ground are of particular
significance as a source of aerodynamic loads imposed on vehicles during
launch operations. The need for quantitative data and better understanding
of the statistical properties of these characteristics has led to the
construction of a 150-meter meteorological tower on Merritt Island at the
Kennedy Space Center. The present report presents the results of a one-
year study of wind data for this site that has been conducted at The
Pennsylvania State University.

The principal aim of this study, which is continuing, has been to
determine the factors affecting the structure of the wind, wind shear, and
associated turbulence so as to permit predictions about the statistical
effects of wind on space vehicles, both on the pad and during the first
few moments of flight. When the effects of parameters such as wind
direction, stability, etc. on the wind shear and turbulence are known,
then statistical models of the turbulent enviromment can be constructed
based on the climatology of the relevant parameters.

The research reported here was conducted primarily by H. A. Panofsky,
Evan Pugh Professor of Atmospheric Sciences, A. K. Blackadar, Professor of
Meteorology, and J. A. Dutton, Associate Professor of Meteorology.
Significant contributions were also made by R. T. Duquet, Associate Professor
of Meteorology, and by Anton Chaplin, Dennis Deaven, James J. Watts, and
Elizabeth Mares, Research Assoclates in the Department of Meteorology.

The report summarizes nearly all aspects of the research conducted
during the first year's study. Not included is a documentation of a computer
program "TRANS" that was developed by Duquet (1967) to compute Fourier
transforms of series of real numbers and, from the transforms, to provide
estimates of spectra and cross-spectra of these series. The program is
based on the Cooley-Tukey Fast Fourier Transform algorithm and provides a
package of auxiliary subroutines that facilitates the analysis of data. A
documentation of this program was issued as a report under the project and

is available from the Department.

vi



The data examined in the study consisted of 84 runs, approximately
one hour in duration, comprising 0.1 second values of horizontal wind
components together with mean wind direction, speed, and temperature at
each of six levels on the 150m tower. The tower facility has been
discussed in detail by Kaufman and Keene (1968) and will be only briefly
sumnarized below.

a. Terrain features

Figure 0.1 shows the location of the facility with respect to the
Saturn V space vehicle launch complex 39. Located about three miles from
the Atlantic Ocean, the tower is situated in a well-exposed area free of
nearby structures that could interfere with the air flow.

The aerial photograph (Fig. 0.2) of the terrain surrounding the
tower (point T) was taken at 1065 meters above mean sea level. TIn the
quadrant from approximately 300 degrees north azimuth with respect to the
tower, clockwise around to 90 degrees, the terrain is homogeneous and is
covered with vegetation about one-half to one and one-half meters high.
Another homogeneous fetch with the same type of vegetation occurs in the
135- to 160-degree quadrant. The areas A (230-300 degrees), B (90-135
degrees), and C (160-180 degrees) are covered with trees from about 10 to
15 meters tall. The fetch from the tower to areas A or C is about 200
meters, and the fetch to area B is about 450 meters. The height of the
vegetation over these fetches ranges from one-half to one and one-half
meters; as in the area to the north of the tower. To the south-southwest
in the 180- to 230-degree quadrant 225 meters from the tower, there is a
body of water called Happy Creek.

b. Instrumentation

The complete tower facility comprises two towers, one 18 meters
and the other 150 meters high (see Fig. 0.3). The levels on both towers
are instrumented with Climet (Model Cl-14) wind sensors. Temperature
sensors, Climet (Model -016) aspirated thermocouples, are located at the
3- and 18-meter levels on the small tower and at the 30-, 60-, 120-, and
150-meter levels on the larger tower. Foxboro (Model F-2711AG) dewpoint

vii
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Figure 0.3 Schematic diagram of the NASA tower facility.
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Figure 0.2 Aerial plan of the NASA meteorological tower facility taken at
1065 meters above mean sea leyel. See text for explanation,



temperature sensors are located at the 60- and 150-meter levels on the
large tower and at the 3-meter level on the 18-meter tower. Wind speed
and direction data can be recorded on both paper strip charts and analog
magnetic tapes with an Ampex FR-1200 fourteen—channel magnetic tape
recorder which uses a 1l4-inch reel. The temperature and dewpoint data
are recorded on paper strip charts. To avoid tower interference of the
flow, the large tower is instrumented with two banks of wind sensors.
The details of how and when one switches from one bank of instrumentation
to the other bank were discussed by Kaufman and Keene. During a test in
which the wind data are stored on magnetic tape, only one bank of
instrumentation is used. This avoids interruption of the wind data
signals within any magnetic tape recording period, and thus avoids data-

processing difficulties when converting analog tapes to digital tapes.
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- I. A PRELIMINARY STUDY OF THE PROBABILISTIC STRUCTURE
OF TURBULENT FORCING OF LAUNCH VEHICLES

John A. Dutton

1.1 Introduction

The loads on the structure and control systems of aerospace vehicles
arise from a variety of sources, and the responses to these loads involve
interactions by diverse components of the system. Design of a successful
vehicle obviously involves determination of the sources of loads and a
specification of the characteristics of both the loading and the responses
which can be expected.

The interest in this report centers on development of suitable
analytical and empirical models of the environment for the study of the
forcing of vehicle response by the winds and turbulence which it encounters.
The total loading of a vehicle can be separated into two distinct cases.
First, there are the responses to the enviromment which occur while the
vehicle is on the launch pad. The second case includes all the loads and
responses which occur during the flight of the vehicle.

While the vehicle is on the launch pad, it is subjected to the forces
and torques imposed by the ambient wind and turbulence fields. A prototype
case is that of a cantilever beam in a turbulent stream. The study of this
problem is a relatively straightforward one, particularly because a number
of simplifying assumptions may be invoked. We shall refer to the study of
vehicle forcing on the launch pad as the static case.

More complex problems are encountered in the attempt to study the
loads and responses of a launch vehicle in flight. Two main sources of
in-flight loading are inherent in the vehicle and its mission. First,
there will be natural oscillatory modes of the structure which may be
excited during flight. Second, loads will be imposed by the control system
as it attempts to follow an established trajectory. These two sources of

loads can themselves lead to catastrophic responses.



A third source of in-flight loads is the enviromment in which the
vehicle must operate. The aerodynamic loadings on the vehicle will be
altered when atmospheric turbulence is encountered, and torques induced
by shears in both the mean wind and its turbulent component require load-
inducing commands from the control system. The environment may provide
significant forcing of natural modes in both structural and control
components of the vehicle, and due to the possibility that disastrous
atmospheric configurations may be encountered, the environment may also
be a source of catastrophic response.

On a given launch, both deterministic components of the environment,
such as the mean wind profile, and random components, such as the turbulent
parts of the motion field, may be important. The aspect which complicates
analysis is that the designer must be concerned with the ensemble of
possible atmospheric configurations, and thus is forced to view any
particular case as a realization of a random process.

Therefore, both the static and in-flight response problems are
essentially those of a deterministic system forced by a random environment.
The crucial question, in developing adequate design procedures, then, is
what information about the atmospheric environments is needed and how can

it be used effectively.

1.2 Approaches to the probabilistic study of response

Two approaches, different in spirit but necessarily interrelated,
are possible. In the first, the emphasis is placed upon the characteristics
of the temporal relationships between the environment and the respomnse.
In essence, the response at any time is viewed as a functional depending
upon the entire past history of the relevant atmospheric variables. An
example of this type of study is the determination of the spectra of
responses from the spectra of atmospheric variables. When the characteristics
of the “functional relating response to the entire past of the forcing are
known, .it is in principle possible to determine the probabilistic structure
of the response, and this permits the designer to assess system reliability

on the basis of confidence limits derived empirically from atmospheric data.



The second major approach is to concentrate on the probabilistic
structure of the response as determined from the probabilistic
characteristics of the forcing, ignoring as much as possible the temporal
sequencing of events. For example, a linear system forced by a Gaussian
process will itself possess a Gaussian response and thus the statistical
characteristics of the response can be determined with the functional
relationship between input and output used only to establish relationships
between basic statistical parameters such as means and variances; the
details of temporal sequencing can be neglected. 1In this approach the
emphasis is on the probabilistic structure of a phase space composed of
relevant vehicle and atmospheric variables, and the precise trajectories
in the phase space representing actual sequences of events are only of
minor interest.

Although this second approach of concentrating on the phase space
is the more economical and sophisticated method of contemplating response
problems, it is only possible at present in certain simplified situations.
The necessity of dealing with nonlinear responses or non-Gaussian forcing
in most of the important cases necessitates determination of the structure
of these phase spaces by the calculation of numerous trajectories. It is
necessary, in effect, to adopt the first approach and to study the temporal
sequencing of response as a functional of forcing in sufficient detail that
the resulting trajectories are dense enough in the phase space so that its
structure can be ascertained.

The first step, regardless of which approach is used, is to determine
the statistical structure of the forcing. Thus we first consider the
probabilistic characteristics of atmospheric turbulence as revealed by wind
measurements at the Kennedy Space Center. Comparisons with some other data
on atmospheric turbulence will be made as an aid in establishing the

reliability and general applicability of the conclusions.

1.3 Topics to be discussed

Some of the basic theory is reviewed in the next section and the
particular difficulties associated with analysis of launch vehicles are

considered. The preliminary observational results now available are



presented and some conclusions about the probabilistic structure of turbulence
justified. - ‘

Finally, an approach to the study of the structure of the largest gusts
which has particular significance for simulation studies is developed and
illustrated with a preliminary sample of data. This approach, which is based
on the proper orthogonal decomposition theorem, is then used to establish a

theory of the spectra of launch vehicle response.

1.4 Some aspects of response statistics

The most general characterization of the relationship between the
response of launch vehicles and the forcing of the atmosphere may be

written as
(1.1) ?i = Yi(t; yl,...,yn; ul,...,um) (i=1, 2, ..., n)

in which y, are the response variables, &i their derivatives, uj are the
atmospheric forcing functions, and t is time. Higher order differential
systems can always be put in this form by addition of auxiliary variables
if necessary. When solutions exist they may be written as functions of

time and the initial values yi(to) in the general form

(1.2) y;(8) = Fo(t5 yo(£))seees y (£,

The effect of the forcing variables is now masked in the time dependence
indicated. Thus in principle the probabilistic structure of the variables

yi is determined by the statistical characteristics of the forcing

variables.

1.5 Consequences of linearity

In many cases, the system (1.1) may be reduced by perturbation theory

to a linearized system of equations which may be written as

(1.3) y = Ay + Bu




where y is now an n x 1 vector of responses, u the m x 1 vector of forcing
variables, and A and B the (n x n and n x m) matrices of constant

coefficients. Such a system of equations has the formal solution

t
y(®) = e[ fe ™ Bu(myar + y(t )]
t
(1.4) °
t
= [ A Dpuman + y(e et
t

o

in which the exponents with matrix arguments may be specifically evaluated
with a MacLaurin's series. The usual assumption that y(—) vanishes and the

definition of the matrix

(1.5)  W(t-1) = Mt Dg

allows us to write

t
[ W(t-T)u(r)ar

- 00

y(t)
(1.6)

oo

fW(t)ult-t)dr
o]

For many aeronautical applications, it can be assumed that (1.6)
applies directly to the problem and that due to the lengthy horizontal
trajectories of aircraft through turbulence fields assumed to be homogeneous
the response y may be treated as a stationary process. The static problem
for launch vehicles may also be treated in this manner, although the
assumption of stationarity of the forcing is not as well justified. 1In both
cases, emphasis then shifts from (1.6) to the familiar spectral equations,
some aspects of which are discussed by Dutton (1968). But for analysis of
launch vehicles in flight these assumptions are certainly not valid. For
example, it is not realistic to reduce (1.4) to the infinite form (1.6) and

furthermore the integral must be calculated along the actual trajectory of



the vehicle through the turbulent field. Thus we must rewrite the basic

equation (1.3) as a function of the vehicle trajectory, x(t), in the form
(1.7)  §(t) = Ay(t) + Bu(x(t),t)

where u(x,t) is the vector of the forcing variables evaluated at position

x and time t. Thus the solution becomes

I
+ f W(t—T)u(§(T),T)dT

t
o

(1.8) y(t) = y(to)e

If the vector y includes specification of the trajectory, x(t), then (1.8)
is not an actual solution to the system (1.7) because the forcing is no
longer a function solely of the time but now depends on part of the vector
y as well. Thus we have reverted to the form (1.1) and no general method
of solution is available.

The appearance of the finite wvalue, tos in (1.8) also makes the
usual approach to spectral theory, which involves changes in the order of
integration, ponderous at best, and points out the difficulties in attempting
to develop a form of the usual spectral procedures which would be as useful
for launch vehicles as it is for aircraft. Many of these same difficulties,
incidentally, appear in the attempt to analyze the statistics of response of

V/STOL aircraft.

1.6 Consequences of Gaussian forcing

Let us assume that the control system has sufficient power to achieve
an established trajectory without error so that §(t) is known in advance.
(Whether it does or not will, of course, depend upon the wind velocities
encountered by the vehicle.) Then E(t) need not be introduced in the vector
y and (1.8) is a solution of the system. Now if the wvariables u(§,t) were a
realization of a Gaussian process, the linear operation in (1.8) would
preserve that structure and all of the necessary statistical information
about the response could be ascertained from (1.8).

For example, consider the one-variable case and assume that y(to)
vanishes. Upon assuming that the Gaussian forcing variable has a

vanishing expectation at each point (x,t), we find that



t
(1.9) E{y)}= W(t-DE{u(x(1),7) }dT = 0

t
o

and that

t t!
(1.10) E{y(t)y(")} = f w(e-)[f w(t'~t")E{ux (1) sT)u(x(t'),t') ' ldt
t t

K2/

Thus the probabilistic characteristics of the variable y are those
of a Gaussian process with zero mean and variance 0y2 = E{y(e)y(t)}
determined with the aid of the weighting function W(T) from the correlation
function of u(x,t). If u(x,t) is homogeneous in space and stationary in time

this correlation becomes
(1.11) Efu(x(D),tDux"),t")} = ¢ (x(1) - x(1"),1-1")

but we still cannot conclude that y(t) is stationary to second order because
of the presence of the finite limits of integration, to’ which point out the
non-stationary effects to be expected in the initial portions of flight.

For the static case, (1.6) shows that the response is a linear
operation on the forcing u. Thus if the forcing is Gaussian, so will the
response be Gaussian with mean and variance determined from (1.6) in the
manner of (1.9) and (1.10).

Because of the relative simplicity of the analysis of Gaussian
processes, the determination of whether turbulence can be so considered is

obviously a first requirement.

1.7 Exceedance statistics

Perhaps of more practical importance in design considerations than
the basic probability demsity function of the responses are the exceedance
statistics which can be derived from them. The basic concepts of the
theory are due to Rice (1939, 1945), and the quantitative interest centers
on the frequency with which a given value of the response may be expected

to be exceeded.



The development of the theory will be illustrated here by a
derivation following Crandall (1963); a thorough and rigorous discussion
is given by Cramer and Leadbetter (1967).

Consider a statistical process y(t) defined, for the present,
in discrete time at intervale of At for a period of length T. We
define the quantity N(y) t., be the irequency with which the process
crosses through the value y with positive slope in unit time. We may
write as the probability that a point sc.iectel at random will be a

point at which y is crossed with positive slope

Number of crossings of y in T
Total number of points in T

Pr {crossing of y}

_ Number of crossings of vy in T
(1.12) - T/At

= N(y)At

Now let us consider the function y(t), its derivative y(t), and
a fixed level Yor If y(t) is sufficiently smooth, then it can cross Yo

with positive slope during the time between t and t + At only if
(1.13) (&) <y,

and

(1.14)  y(r+de) >y

Upon making At small enough, we may use a Taylor's series to rewrite the

last condition as
(1.15) y(t) > Y, ~ v(t)At

where ¥y must be positive for a crossing with positive slope to occur

before t + At.
Thus if p(y,y) is the temporally invariant joint probability



density function, then we may combine (1.13) and (1.15) to find that

N(yo)At = Pr {crossing of y}
(1.16) w Yo
= fl [ »G.9dyldy
oy _-yAt
o
To eliminate the dependence on At we may differentiate by it to
obtain

(1.17) N(y) = fyp(y -ybt,§5)dy
o

and then, so that the results apply to continuous time, we let At vanish,
and for simplicity drop the subscript on Vo Finally, then, we have the

result that

(1.18) N(y) = { 9p(y,9)dy
[e)

Exceedance statistics are generally presented in normalized form

o0 [oe]

(1.19) N¥)/NO) = [ yp(y,y)dy/f 9p(0,9)dy
(e} o

and it is obvious that if the variable y and its derivative are

statistically independent so that
(1.20) p(y,¥y) = p_(¥)p.(¥)

y y
then we have

(1.21) N(y)/N(@) = p(y)/p(0)

Thus for a stationary Gaussian process, in particular, we may employ

spectral theory to obtain the correlation



10

[e2]

(1.22) E{yy} = [ iwd(w)dw

-0

]
o

which vanishes because the spectrum is an even function. Thus (1.20) is

valid and we have

2
(1.23) N /N@) = exp [- 5 (3/5) ]

in which, from (1.18) we know that

(1.26) N(O) = 57 (64/0)

When the forcing is Gaussian and stationary, then (1.23) will
hold for any linear response to that forcing and the variances O 2 and
0§2 may be calculated from relations of the form (1.6). For morZ general
cases and launch vehicles in particular, the basic concern centers again
on the question of how the probabilistic structure of the response is
determined from the characteristics of the stochastic forcing functions
and the temporal evolution of that probabilistic structure must be taken

into account in the theory of exceedance statistics.

1.8 Preliminary results on statistical structure and exceedance

statistics of turbulence at Cape Kennedy

Four sets of data measured at six levels at Cape Kennedy were
analyzed in detail to obtain information on the probabilistic structure
and exceedance statistics of the turbulence fields which affect launch
vehicles while they are on the launch pad and in the initial phase of
flight.

The original reeords were wind direction and speed and thus permit
definit{Qn of a vector wind ve}ocity, V(t). Let i be a unit vector in
the direction of the wind speed, V, ovgr the meas;rement period, and let

j be a second horizontal unit vector orthogonal and to the left of i.
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Longitudinal (u) and lateral (v) components of the turbulent field are

thus defined as

(1.25) u

(y(t>-y)-§

<
Il

V()]

The data used in this section were the original measurements of
the component speeds sampled at 10 times per second with linear trends
removed. The following quantities were computed from the four sequential
records made available:

1. Probability density functions, p(u) and p(v), for the gust
velocities as a function of the normalized variates u/du and v/ov;

2. Probability distribution functions P(u) and P(v) as a function

of the normalized variates, where

u
(1.26) P(u) = J p(u")du'

o o]

3. The frequency N(y) of the number of times that levels y were
crossed with positive slope per unit time as a function of normalized
variates y/Oy where y/oy is either u/ou or V/OV;

4. The exceedance probability, N(y)/N(0), where y > O;

5. The frequency function for the occurrence of a local maximum
or minimum of y(t) in the interval (y, y + Ay);

6. The ratio
(1.27) R = [N(y)/N(0)1/Ip(y)/p(D)]

which is a test of the independence of y and y.

These quantities, then, reveal whether the_yelocities have a
Gaussian frequency function, what form any departure;\f?bm a Gaussian
law take, and the relevant facts about the exceedance statistics.

The basic data about the four data runs analyzed are given in
Table 1.1 and graphs of the listed quantities are displayed in

Figs. 1.1 - 1.10, The first two figures, 1.1 and 1.2, are averages.



Figure 1.1

Statistical characterization of the u-component of turbulence at Cape Kennedy
as revealed by the averages of four runs, The plotted numbers represent the
six levels on the tower at which the sensors are mounted, the numbers
increasing with increasing altitude. The abscissas are standardized variables
u/0y. The solid line represents the Gaussian case. In the upper right, the
dashed line represents the case of independence between the variable and its
derivative. On the lower right, the ordinate is n[N(y)/N(0)] and the abscissa
is (u/Ou)z.
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Table 1.1 Basic data for the four runs analyzed.

Level (m)
Richardson Number 18 30 60 90 120 150
Run NASA PSU Wind Velocity (m sec™l)
29 ~-0.19 0.14 3.6 4,2 5.5 6.6 7.2 7.9
67 ~0.52 -0.32 7.3 7.7 8.1 8.2 8.3 8.4
70 ~0.58 -0.39 6.5 6.9 7.5 7.9 8.0 8.3
75 ~0.32 -0.20 5.5 6.1 6.8 7.0 7.2 7.4

computed using the data from the four runs simultaneously. The following
conclusions are suggested by this average data:

1. The probability density functions are larger at the origin
than a Gaussian function and less than the Gaussian function for y/Gy in
the ranges between 1 to 3 and -1 to -3.

2. The distribution functions show that there is a tendency for
a higher probability of large gusts of either sign than in the Gaussian
case. The largest departures tend to be at the upper levels.

3. The curve N(y) does not obey the Gaussian law, and N(y)/N(0)
tends to fall below the Gaussian curve at first, and then decrease in
slope giving a greater probability than for Gaussian cases of crossings
of large values.

4, Although strict independence of y and y is not verified by
the data, it appears that the addition of a function, C(y), to the

relation in the form

LNG) 0 p(y)
(1.28) X(0) 2(0) c(y)

could be used to make it more accurate than the Gaussian assumption for

N(y). This correction would be zero at y equal to zero, and about 2 at
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y/cy equal to three, and would thus take account of the correlation
between y and y.

The implications of the first three conclusions were discussed
in detail by Dutton (1968) where it is shown analytically that a model
of turbulence which takes account of its patchy structure appears to be
in agreement with the observations. Specifically, it was shown that if
the motion fields were composed of patches of fairly intense turbulence
with a Gaussian probability demnsity function which were surrounded by
regions in which the motions were also Gaussian but with less energy,
then the distributions obtained from the entire field would behave
qualitatively as enumerated in the first three conclusions.

The wide range of variation possible between individual sets of
data is shown in Figs. 1.3 - 1.10. It was perhaps unfortunate that the
four samples available had similar mean wind profiles and that three were
from definitely unstable conditions. It will be revealing to discover
in future analysis whether these statistical characteristics of the
turbulence change under neutral and strongly stable conditions, and

whether the relationships will change with light and strong mean winds.

1.9 Spectral theory on finite domains and the structure of the largest

gus ts

The characteristics of the large-scale features of fields of

turbulent motion are of consideragble interest to both theoreticians and
engineers. The analysis of the largest eddies is difficult from a
theoretical standpoint because it is unlikely that either homogeneity or
isotropy are valid assumptions and no simplifying concepts like that of
the universal equilibrium range are available. For the engineer or
vehicle designer, the largest gusts are clearly of conern because they
contain the majority of the energy and thus have the most pronounced
effect on the system.

The mathematical problem to be solved is to find an economical
method of representing these largest gusts. There is no a priori reason

to suppose that any of the classical orthonormal series will be
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strikingly efficient in this task, and a tempting objective is to find a
set of orthonormal functions which, in some sense, is the most like the
functions we -are trying to represent. Toward this end, the application
of the proper orthogonal decomposition theorem (Loeve, 1963) has proven
useful in both the study of large-scale meteorological features (for
example, Lorenz, 1956; Kutzbach, 1967) and in the study of turbulence
(Lumley, 1965). We shall see that it permits a generalization of the
notion of spectral decomposition of the variance for functions defined
on finite domains, and thus provides a useful method for analysis of

launch vehicle response.

1.10 The orthogonal decomposition theorem

To facilitate understanding of the empirical results, we shall
develop the relevant theory at some length but make no attempt at
bibliographic completeness. Suppose we have an ensemble of functions {f}
defined on a finite domain (A < x < B) and would like to find one function,
¢, which is simultaneously the most like all of the functions {f} in some
sense. The precise nature of ¢ will depend on how we measure resemblance,
but if {f} were a series of time histories of large gusts with the peak
value occurring at the same relative time in the domain of each function
f, we could expect ¢ to be a composite '"large gust."

A first choice might be to have the correlation between ¢ and
f as large as possible upon averaging across the ensemble. This would

lead to an attempt to maximize
(1.29) 1 = ffx)P(x)dx

in which the definite integral is over the domain of f. However, we are
not concerned about signs or magnitudes so that a better choice would be

the positive, normalized quantity

2 - EGo oG ax|?

(1.30)
ffzdxf¢2dx
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for which the Schwarz inequality shows that p2 < 1.
Finally, to find the best representation of all the functions in
{f} simultaneously, we average across the ensemble with the expectation

operator to obtain

2
(1.31) E{pz} = E_[MEL_

£ a0 dx
Before proceeding to calculate the ¢ which gives a maximum, let

us consider another possible measure of resemblance. We might choose
2
(1.32) D = [|f-¢|“dx

but this choice leaves open the possibility that, upon averaging over the
ensemble, a function ¢ which was like some f and like -f for other
functions would be rejected because resemblance to -f would give a large
increment to D. Such a function would be useful, however, because its
sign could always be changed for any individual f; therefore we want to
retain this possibility. Another difficulty with (1.32) is that upon
finding a ¢ which extremizes E(D) we would not know whether the extremeum
is a maximum or a minimum. This problem has been avoided in (1.31)
because the minimum is obviously zero.

To solve the problem, let us observe that (a - b)2 vanishes if
a =b and that (a + b)2 does if a = -b so that (a - b)z(a + b)2 vanishes
in either case. Furthermore this quantity must be positive. Upon

putting a = Ab, we find
(1.33) (a-b2@+n2=u10?+ D% - 0

so that, ignoring the magnitude of b, the quantity has extreme values

if

(1.38) A% -1 =0
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Thus it is a maximum for A = 0 and a minimum for A = + 1.
It is convenient to normalize our functions with

£ = £/ (S£2an)t/?

N

(1.35)
o/ (fo2ax) /2

¢N
and on the basis of the above results we choose
(1.36) D = f(f —¢)2dxf(f +¢)2dx
: N N N N N

as our measure of similarity. Now it is obvious that with the definition

of (1.30)

(1.37) Dy = 4(1 - p) (1L+p) = 4 - p?)
so that a maximum of E(pz) will give a minimum of E(DN). This makes it
clear that the ¢ we hope to find will be more similar than any other
function to each f in the ensemble simultaneously —— with similarity to
-f considered as beneficial as similarity to f. Similarity, of course,
is measured by (1.31) or (1.36).

Therefore, we suppose that a maximizing function exists and we

choose some arbitrary function 8¢ and put

2
(1.38)  E{p2(e)} = p2(e) = E Ifg(we@)dxlz
SE7dxS (¢p+edd) “dx

Because 52 is a maximum by definition when € = 0, we expect that

(1.39) L€ =0

and so this operation should reveal the nature of the function ¢.

Performing the differentiation and the evaluation at € = 0, we find that
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(1.40)  SUEIEGEM10GIdx - p2o(y) }as(xddy = 0

and because we want ¢ to be the function which gives a maximum, it must -

be true that (1.40) vanishes for any d¢ whatever. This will be true if
(1.4 JEE@EDI6EE = p20()

This integral equation, however, rather than specifying one function ¢
generally has a variety of solutions, each associated with a different
value of the eigenvalue 52. To discover the significance of these
solutions, let us name the various values of Ez'which lead to solutions
with An and order them by magnitude with Al being the largest. The
solution obtained with each An will be denoted by ¢n and we will define

the covariance function

(1.42) R(x,y) = E{f)E(y)}

Thus the equation becomes

(1.43) JRGx,y)¢ (dx = A_¢ ()

Now let us take (1.43) and multiply by ¢m(y) and integrate, which yields
(1.44) JURG, MG, (Ndyle )dx = A _So ()¢, (7)dy

and upon applying (1.43) on the left we obtain

(1.45) (Xm - An)f¢n(x)¢m(x)dx = 0

Thus if kn and km are distinct eigenvalues, the integral must vanish —-—

that is to say, the set of functions ¢n is orthogonal.
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For R(x,y) defined on a finite domain there will be at most a
countable number of eigenvalues, and if it should turn out that for some
eigenvalue there is more than one associated eigenfunction, the set can
always be orthogonalized by the Gram—-Schmidt method. Furthemore, all
of them may be normalized as in (1.35), so that henceforth we assume that

the set of functions ¢n is orthonormal.

Now let us use the set of orthonormal eigenfunctions to suppose

that any function f in the ensemble can be represented by
o

(1.46) f(x) = kil a, b, (%)

Upon multiplication by ¢n and integration we find that

(1.47) a = ff(x)¢n(x)dx

Use of this definition of the coefficient a allows us to calculate that

(1.48) E{anam} E{E£(x) ¢ (x)dxSE(y) ¢ (y)dy}

JIR(x,7) ¢ (x)dx]¢ (y)dy

= A6
n m,n
Thus the coefficients are uncorrelated across the ensemble, and of equal
importance, from (1.46) we find that

2 o
(1.49) S E@x) | “ax z ajakfd)j (x) ¢, (x)dx

1 k=1

I
ne~ g

k|

2

a.k

I
T ™ 8

=1
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Upon taking the expectation we find that

(1.50) E{feax} = £ a? = =% A

n=1 T n=1
in which the last equality is verified by reference to (1.48).

Hence we may conclude that the eigenvalues reveal the fraction
of the total variance (or mean square), E{ffzdx}, which is explained by
the associated eigenfunction. This permits a more revealing
interpretation of the results. We may choose ¢1 as the one function most
like each of the functions in the ensemble {f}. But ¢l does not explain
all of the variance, so we form a new ensemble of functions {f - al¢1}
and find the one function most like these residual functions; the answer
will be ¢2 and so we consider a new ensemble {f - al¢l - a2¢2}; by
induction we thus arrive at our previous results.

To see how well we have represented the totality of functions

let us calculate an error, ef(N),

N

2
e (N) = Sl - I an¢n| dx
n=1
2 N N N
= [|f|“dx =2 T affpdx+ I I aalfd ¢ dx
n n n m nm
n=1l n=1 m=1
(1.51)
2 e 2
= f|f]|“d4x -2 I affodx+ I a
n n n
n=1 n=1

2 > 2 X 2
S1£|%ax - = [Sfo a&x|“+ T la_ - S£¢_dx]|
n n n
n=1 n=1
At this point we have shown that, whatever the nature of the orthonormal
series, ¢n’ the choice (1.47) for a will make the error as small as
possible. Use of this definition of a in the second termlof (1.51) then

yields
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2 N 2
(1.52) e (M) = f|£]%dt - % |a |
n
. n=1
But now the expectation operator gives as a particular case for the

orthonormal eigenfunctions

. ) N
(1.53) i{e )} = E(rf|%ac} - 1
n=1 1%

Taking account of the relation (1.50) finally allows us to conclude that

(1.54) lim E{e (M} = 0
Nooo
so that in this mean square sense across the ensemble, the series (1.46)
gives us a convergent representation of the functions {f}.
The point is that because the eigenvalues and thus the eigen-
functions can be arranged in order of the fraction of the variance they
explain, if the functions in the ensemble {f} do have a characteristic

structure, the first few eigenfunctions should reveal that structure.

1.12 Optimal character of eigenfunction representations

Before proceeding to the observational results, it will be
revealing to look at the question of optimality of the eigenfunction
expansion in reverse order. (For a different approach to the final
result, see Lorenz, 1956.)

Let us consider an ensemble {f} of functions defined on a finite
domain and an arbitrary orthonormal sequence of functiomns, wn. A measure

of error in representation with a finite series of the form (1.46) is
N 2
(1.55) e (N) = SIF&) - oy (x)|%ax
- pel B O

It is clear from the last equation of (1.51) that whatever the sequence

wn’ the error will be a minimum if



32

(1.56) o = ffwndx

Therefore, we can consider what happens to the error when we change to

functions wn + 85¢n and to coefficients
(1.57) o + sGan = ff(lj)n + €6¢n)dx
For the new error, we write

N
(1.58) e (N,e) = fl£(x) - nil(an +eda )@+ ern)lzdx

and to determine the properties of the set of functions wn which

minimizes the error we proceed as before with

def(N,e) N N
45 le=0 = 2f[fx) - X amwm(x)][ X (wn(x)ﬁan + ahﬁwn(x))]dx
m=]1 n=1
N N N
(1.59) = 2[nzlun6a - mzl nzlamanfwm(x)Gwn(x)dx]
N N
= Znil[anGQH - milqmanfwm(x)ﬁwn(x)dx]

By definition we have
(1.60) an6an = ff(y)wn(y)dyff(x)Gwn(x)dx

so that

]

Elo Sa_] E{fff(x)f(y)wn(y)ﬁwn(x)dde}

(1.61) JIRGLYIY (7) 68U (%) dxdy
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Thus upon averaging across the ensemble, (1.59) becomes

1 _ds;f(N,'s) N
1eioE g - kiR, @
n=1x% vy
(1.62). N .
- E[anqm]mm(x)}ﬁwn(x)dx
n=1

But the expectation is over {f} so that we interchange the operations and

find that it will be true that
(1.63) 4 ple_(N,e)} = 0
‘ de £ e=0
for any Gwn whatever provided that for each n we have

N
(1.64) SRGx,9)Y, (7)dy - milE{anam}wm(x) =0

A particular solution to this set of equations is
2

(1.65) fR(x,y)wn(y)dy = E{an }wn(x)

because upon using this relation, (1.64) may be written as
2 N
(1.66) E{an }wn(x) = I E{qman}wm(x)
m=1
and upon multiplication by wk and integration we find that
E{a_%} z
1.67 Ei1a 8 = =
( ) n nk mzl E{aman}amk E{akan}

Thus, if the functions wn are the eigenvectors of (1.65) then (1.67) is
true, and upon use of this relation, (1.64) becomes precisely the

equation, (1.65), which determined the functions wn'
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The interpretation of this result is that the mean square error,
(1.55), averaged across the ensemble will be a minimum for any fiied
number of terms, N, provided we use the eigenfunctions of (1.65) as the
orthonormal set. The Eq. (1.65) is, obviously, identical to the eigen-
value problem, (1.41), and so the functions wn which give the best

representation in this sense are identical to the functions ¢n.

1.13 Variance spectra

It is of considerable importance to note that values of an2 or
E(anz) give a spectral representation which shows how the variance of an
individual function or of the ensemble is distributed over the set of
eigenfunctions. To pursue this further, let us return to (1.43) and
expand the domain of definition to (- «, ®), Now it is possible to add

a further condition that the ensemble be second order stationary so that
(1.68) R(x,y) = R(x-y)
and thus (1.43) becomes (provisionally)
00
(1.69) J RGy) ¢ G = N0, ()

But this integral equation on an infinite domain need not have a countable
number of discrete eigenvalues; they may in fact become continuous. Let
us therefore replace n with a continuous variable, w, and rewrite the
equation in the form

o

(1.70) [ Rx-y)¢(w,x)dx = A(w)$(w,y)

—00

We see now that the choice

(1.71) o(w,x) = e U
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leads to

o o
(1.72) [ RGay)e 20 Vg o [ r(me Tar = A(w)

. -~ 00 -0
Thus A(w) is the Fourier transform of the correlation function, and
except for a constant factor,_the function A(w) is the usual power
spectrum for a stationary process.

The proper orthogonal decomposition theorem, then, gives us a
means of defining a spectrum which is appropriate to an ensemble of
functions defined on a finite domain. The spectrum thus obtained
becomes the classical one when the theory is expanded to stationary
functions on an infinite domain. We shall show presently that this
spectrum for ensembles defined on finite domains can be of considerable

importance in the study of launch vehicle response.

1.14 Representation of the largest gusts

The methods developed in this section were applied to one of
the four runs analyzed in Section 1.8 to determine if the largest gusts
at Cape Kennedy had a characteristic structure.

The data at each level for Run 067 were examined by computer to
find the 10 largest gusts for each component at each level. This
operation yielded 60 large gusts for each component, and data for a
3,000-ft sample were extracted from the entire record with the peak value
at the center. Letting n represent the nth such sample, the correlation

matrix

-t
2

(1.73) R(xi,xj) = ﬁ-nzlun(xi)un(xj)

was then computed. This correlation matrix was used in a summation form
of (1.435 along with a standard matrix eigenvalue routine to determine
the eigenvalues, An’ and the eigenvector, {d)n}.

The first eigenfunctions for both the u and v components are

shown in Fig. 1.11. These eight eigenfunctions explain at least 97 percent
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of the variance in each component. The spectral estimates, or eigen-
values, are shown in Table 1.2.

A comparison of the largest gusts themselves and the representa-
tions obtained with these first eight eigenfunctions is shown in Fig. 1.12.

It is of considerable interest to compare both these eigenfunctions
and the large gusts themselves to those found in data measured with
aircraft at higher altitude and discussed by Dutton, Deaven and
Thompson (1969), and Dutton (1968). The first few longitudinal eigen-
functions and the first eigenfunction for the lateral component for these
data are similar to those found in clear-air turbulence, but the second
eigenfunction for the lateral components of the Cape Kennedy turbulence
data is a departure from both the Cape Kennedy longitudinal case and the
aircraft case. The most logical place to seach for an explanation of
the variation is in the differing effects of buoyancy on the clear-air
turbulence and the Cape Kennedy wind field.

The large gusts from the aircraft data appeared to fall into two
classes. In the first, the peak was relatively isolated and to some
degree one of several large peaks in a quite irregular record. 1Imn the
second class, the largest peak was the culmination of a fairly slow and
regular rise to a maximum which was not markedly above the surrounding
values. The large gusts isolated here are in the second class. This
may be due to the possibility that the first class arises in aircraft
data by records being obtained on runs which pass through the boundaries
of a turbulent zone, thus giving rise to alternating samples of
turbulent and non~turbulent motion.

It is pointed out by Dutton (1968) that the use of these eigen-
functions should provide an economical means of representing the
critical characteristics of turbulence for use an inputs to simulation

studies. Further work on this possibility is now being planned.

1.15 Spectra of launch vehicle respomnse

The classical theory of variance spectra does not apply to launch
vehicle responses in flight because it cannot be assumed, and generally

is not true, that the covariance function



Table 1.2 Eigenvalues for large gusts (Run 067). pod
Order of Eigenvalue (n)

1 2 3 4 5 6 7 8 9 10 11 12
u-component
An=E{an2} 125.0 6.7 4,8 2.04  1.15 1.05 0.68 0.57 0.48 0.43  0.33  0.29
n
z )\k 125.0 131.7 136.5 138.6 139.7 140.7 141.4 142.0 142.5 142.9 143.3 143.8
k=1
N
I A 146
k=1 k
v-component
}\n 73.3 6.2 2.5 1.1 0.71 0.58 0.50 0.43 0.31 0.27 0.23 0.18
n
z )‘k 73.3 79.6 82.1 83.2 83.9 84.5 84.9 85.3 85.6 85.9 86.1 86.3
=1
N
z }‘k 87.8

=1
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(1.74) Ry(t,t') = E{y(t)y(t")}

is stationary, as was pointed out following (1.10). The basic problem,
naturally, is that the responses are defined on a finite domain, but
because the proper orthogonal decomposition theorem applies to such a
situation it permits us to develop a spectral theory for vehicle
responses.

According to (1.10) we have

t t'
(1.75) Ry(t,t') = [ [ w(e-t)w(e-t") R (x(T),T5x(T"),T")dTdT’
tO t0
in which
(1.76) R (1), T5x(1"),T") = E{u(x(D),Dulx(t'),7")}

Thus, the orthonormal eigenfunction representation of the class of

responses y(t) can be determined over the domain (to,T) from

T
(1.77) [ R Ceey (£1)dt" = v v (£)

t
o}

and we shall have, as before,

(1.78) v(t) = anwn(t)
n
with
2 2
(1.79) E{/y"(t)dt} = X E{bn } =2 Yy,
I n

Thus, (1.79) gives a spectrum for the ensemble of responses
which, according to (1.75) depends ultimately upon the characterization

of the response by the weighting function, W (1), and upon the
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characteristics of the turbulent motion as specified by the covarilance
matrix along the trajectory. Hence the problem is to determine a
covariance matrix for turbulent motion such that the important features
of the turbulent fields are characterized adequately. The theory of
proper orthogonal decomposition applies in any number of dimensions, so

that if we could determine the space~time covariance function
(1.80) R(x,t3x',t') = E{u(x,t)ulx',t")}

we would have the general eigenvalue problem or the finite domain (X,T)

T
(1.81) féf { Ru(f,t;f',t')¢n(§',t')dx'dy'dz'dt' = An¢n(§,t)
o

The solutions to this equation would give the expansion
(1.82) uCEe) = % a6 00

and with this we would obtain the representation of the covariance matrix

in the form

(1.83) R, (x,t35x",t") = Izl Ad (x,8)0 (x',t")

It may be pointed out here that certainly some problems in launch
vehicle response will require simultaneous consideration of the effects
of various components of the turbulence field. The above representation
will then have to be expanded to include the covariance function
Rij(f’t;f"t') = E{ui(§,t)uj(§',t')} for the ith and jth components.
The results (1.81) through (1.83) will become valid for this case if given
an appropriate formulation in tensor or matrix notation; for details,
see Lumley (1965).

The relation equivalent to (1.83) for the response is clearly
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1 - 1
(1.84) R (t,t") = i Yi ¥y (¥ (EY)
and the spectral estimate Y, is obtained by integration

T T
= 4 t '
(1.85) Y, tj tf R (£,6")Y, ()Y, (e")dede
o o
in accord with (1.77).

The eigenfunctions, ¢(§,t), which represent the four-dimensional
turbulent field, also serve to specify the covariance matrix along the
vehicle trajectory, x(t), so that (1.75) may now be written with the aid
of (1.83) as

t t!
(1.86) R (t,t") =X A J [ we-twEe'-t") o, (x(1) ,T) ¢ (x(t"),T')dTdt’
7 k ot t ko v
o o

Therefore, the spectral estimate, Yn’ of the fraction of wvariance

associated with the nth eigenfunction becomes

(1.87) Y, =

T t
Z { wn(t)[{ W(e-1)¢, (x(1),T)dr]de}
(o]

(o]

T t
L[ N W=t (x(t) Tt 1de')
o o
Upon reversing the order of integration, we define

T T
(1.88) L tf [tfwn<t)w<t—r>dt]¢k<§<v>,r>dr
(o]

and hence obtain from (1.87) the relation

2
(1.89) Yo = I N (g0

The values of (In 2 show how the energy represented by Ak and its

R
associated eigenfunction are transferred to Y and its eigenfunction.



Neglecting questions of computational feasibility, we have thus
shown that if Ru(f’T; §',T') is known and summarizes the covariance
characteristics of turbulent fields to be encountered by launch vehicles,
then upon being given weighting functions for the responses of interest,
it is possible to obtain an estimate of the distribution of variance
which serves to replace the classical power spectrum, which unfortunately,
is not applicable to this case.

In order to obtain some simplification of the procedure, let us
assume that the first N terms of the expansion (1.83) will suffice and

let us put

t
(1.90) 3 (e) = [ W(e-1)¢, (x(T),T)dT
. X
(o]

Then from (1.86) we obtain the finite representation

(1.91) R(t,t") =

i 12

A J (0)T (")
k=1 k'k k

Now our integral Eq. (1.77) has a kernel of finite rank and may be

written as

T N

(1.92) [T AI (©I (DY (£Dde" = v ¥ (t)
t k=1
o]

n=1,...N

The eigenvalues and eigenvectors for the responses are found
from (1.92) with the approximate kernel, R(t,t'), given by (1.91).

Thus from knowledge of the eigenvalues and eigenfunctions for
the turbulent field and the weighting function we are able to obtain
explicit values for Yn and also determine the associated eigenfunctions.
This gi@es a spectral characterization of the response to turbulence.
Moreover, once the Yn and wn are determined from (1.92) we can use (1.88)

to find In k and thus can study how energy is transferred to the response.
s
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In the introduction it was pointed out that two approéches to
the development of predictions of the probabilistic structure of launch
vehicle responses are possible. 1In the first, the emphasis is on the
temporal sequencing of events; in the second, primary attention is
devoted to study of probabilistic relations in a suitable phase space.

The fact illustrated in Section 1.8 that the turbulent
velocities cannot be considered a realization of a Gaussian process
would seem to preclude the second approach at the present time. The
development of a theory of in-flight launch vehicle response spectra
which makes available a methodology for attempting the first approach

was given in Section 1.9.

1.17 The covariance function

The basic problem is that the required covariance function cannot
be determined directly from measurements on only one tower because
correlation information in the cross-wind direction is obviously
missing. The multi-tower TOLCAT project of the U. S. Air Force is an
important step in obtaining the necessary empirical data.

It was shown that the response spectra, as defined for a
discréete domain, could be obtained if the covariance tensor Rij(g,t; §',t')
[or for simple cases, Ru(§,t; §',t')] were known. This is the same -
point reached in a thorough study of the dependence of the response of
V/STOL aircraft on atmospheric forcing by Skelton (1968). The general
lack of either theoretical or empirical knowledge about this important
function for the case of atmospheric turbulence was discussed by
Skelton. He proposed a model based on considerations related to Taylor's

hypothesis which served to permit explicit response calculations.

1.18 Conclusion
Development of methodology for predicting the in-flight response

statistics of both launch vehicles and V/STOL aircraft is a much more



difficult task than the equivalent problem for conventional aircraft --
and even the simpler aircraft problem has not been completely resclved.
At the heart of the difficulty is the fact that many of the
powerful simplifying assumptions used in theoretical studies of both
turbulent motion and response of randomly forced systems are not

applicable. Thus, the mathematical methods are more complex, and the

dependence of the results upon the precise nature of the atmospheric

forcing appears to be critical.
However, the main lines the investigation must take seem clear,

and success will be possible if the wells of perseverance do not run

dry.
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II. ANALYSIS OF MEAN WIND PROFILES

Alfred K. Blackadar and Anton Chaplin

2.1 Aerodynamic roughness of the site

The aerodynamic roughness z, of the surface is a basic parameter
with respect to many aspects of the flow in the surface layers. Its
determination is most readily made by a careful study of the mean flow
near the ground because the aerodynamic theory of this flow has received
the greatest amount of study and has been tested under the widest variety
of environmental situations.

The best indicators of surface roughness are the winds at the
lowest levels on the tower. At these levels the complications arising
from buoyancy, change of stress with height, and possible changes of
roughness upstream have relatively minor effects.

Even cursory inspection of the site, or photographs thereof,
suggests that the roughness, as revealed by wind profiles, should vary
considerably with wind direction. An analysis of the measured values by
wind direction is described in this section. In the remaining portions
of this chapter studies to assess the effects of inhomogeneous terrain
and height decrease of stress are briefly discussed.

The procedure by which roughness lengths were derived is the
following.

(1) The mean wind profiles in m sec—l were plotted for each run

on 5 cycle semi-logarithmic graph paper.

(2) The mean temperature profiles in °F were plotted for each

run on linear graph paper.

(3) The temperature at 30 meters was determined from (2) and

the gradient Richardson number at 23 meters for each case

was calculated using Eq. (2.1)

_ 1508y, - 8g)
2

(2.1) Ri
23 = =
T(ugg - uyg)



48

where O and u refer to the potential temperature and mean
wind speed at the level indicated by subscript, and T is
the mean absolute temperature between the two levels.

(4) Each non-stable wind profile was corrected for stability

according to the equation

Uxo z
(2.2) u = n P P(R1)
[o]

where u is the mean wind speed at height z, k is von Karman's
constant with numerical value 0.4, ¥ is a universal function
of the local Richardson number, and u*o is the surface
friction velocity. It was assumed that Ri is a linear
function of height and only the lowest two heights, 18 and

30 meters, were used to determine the slope of the new
profile.

(5) From (4) the values of z and u,, were directly obtained and
the complete results are printed in Table 2.1. Also see
Fig. 2.1.

(6) After carefully inspecting Table 2.1 and a topographical map
of the KSC area we divided the results into sectors that
visually appeared to have similar roughness elements.

(7) The wind profiles referred to in (6) were further divided
into near-neutral and unstable cases indicated by N and U.
See Table 2.2. Note: Stable cases were not analyzed.

(8) For each category in Table 2.2 a composite wind profile was
determined from which z, and Uy, Were obtained in the same
manner as for the individual wind profiles. The results are
given in Table 2.3 and Fig. 2.2.

The entire procedure enumerated above was carried through twice.

Some noteworthy conclusions have been deduced from the analysis with the

aid of the tables and graphs and are presented as follows:
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Figure 2.1 Roughness length computed from the wind profile of
individual runs as function of wind direction.



Table 2.1

Richardson number at 23 m, roughmess length and friction velocity computed for
and F refer to values computed by Chaplin

individual runs.

The subscripts C

and Fichtl, respectively. Wind direction given as average in first 30 m. Wind
speed given at the height of 10 z -
Wind Wind u
Run No. Direction Rlc R1F Zoc 2.p Speed *0_1
degrees m m m sec m sec
013 10 -0.04 -0.06 0.23 0.22 6.7 1.20
020 320 -0.83 -1.33 0.21 0.21 2.9 0.49
029 85 +0.14 -0.19 - - - -
030 70 -0.16 -0.19 0.12 0.09 4.4 0.76
057 105 ~-0.18 -0.19 0.25 0.28 4.9 0.85
067 55 -0.32 ~0.52 0.07 0.10 3.3 0.57
070 130 -0.39 -0.58 0.10 0.12 3.2 0.55
075 155 ~0.20 ~0.32 0.52 0.52 4.0 0.70
078 285 -0.04 ~0.08 0.56 0.88 4.2 0.72
082 5 -0,12 ~0.18 0.12 0.20 4,2 0.73
091 275 -0.17 -0.31 0.48 0.59 4.0 0.69
095 170 -0.05 ~0.08 0.70 - 5.0 0.87
096 165 -0.19 -0.27 0.37 0.48 4.5 0.78
098 25 -0.30 -0.46 0.23 0.26 3.5 0.61
101 105 -0.23 ~-0.41 0.42 - 2.6 0.45
107 200 +0.08 +0.10 - - - -
110 325 -0.57 -0.51 0.06 0.06 2.9 0.51
118 90 -0.33 ~0.40 0.50 0.47 3.4 0.58
121 335 -1.01 -1.42 0.26 0.25 2.6 0.45
133 140 -0.14 -0.14 0.40 0.38 2.8 0.49
136 165 -0.24 -0.67 0.14 0.52 2,0 0.34
137 180 bad - - - - -
138 95 -2.36 -2.85 0.06 0.08 1.8 0.31
141 40 -2.32 -1.95 0.07 0.17 1.9 0.33
142 210 +0.08 +0.08 - 0.08 - -

0s
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144
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150
151
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155
156
159
160
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163
164
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167
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172
173
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176

220
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90

60
180
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110
355
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130
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235
115

+0.11
+0,14
-0.60
-0.36
-9.75

-0.31
+0.02
-0.66
-0.92
-0.20
-0.33
bad
-0.21
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-5.08
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-1.13
-0.68
-1.08

+0.13
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-1.04
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Table 2.2 Richardson number at 23 m, roughness length and friction velocity of
individual runs tabulated in wind-direction groups. N denotes near-
neutral runs, U unstable runs. Wind speed given at 18 and 150 m.

Wind Wind
Stability Run No. Ri z, Direction Speed Yo
m degrees m sec m sec-1
Group 0. Wind Direction (320°-10°)
N 013 -0.04 0.23 10 12.1-16.8 1.20
N 082 -0.12 0.12 5 8.5-10.4 0.73
U 110 -0.57 0.06 325 6.1- 7.2 0.51
U 121 -1.01 0.26 335 3.8~ 5.0 0.45
U 020 -0.83 0.21 320 4.4- 5.4 0.49
Group I. Wind Direction (25°-85°)
N 030 -0.16 0.12 70 9,0-12.6 0.76
U 067 -0.32 0.07 55 : 7.2- 8.4 0.57
U 098 ~0.30 0.23 25 6.0- 7.0 0.61
Group II. Wind Direction (85°-150°)
N 057 -0.18 0.25 105 8.0-11.3 0.85
N 133 ~0.14 0.40 140 4.3~ 5.7 0.49
U 070 -0.39 0.10 130 6.4- 8.3 0.55
U 101 -0.23 0.42 105 3.6- 4.9 0.45
U 118 -0.33 0.50 90 4o4= 5,3 0.58
U 149 -0.60 0.11 125 4.5~ 4.8 0.40
U 150 -0.36 0.04 125 5.5- 6.0 0.40
U 163 -0.33 0.10 110 3.4- 4.0 0.34
6] 165 -0.21 0.38 100 5.2- 7.2 0.62
U 167 -0.27 0.45 120 2.2- 3.7 0.28
U 172 -0.78 0.10 120 4.5- 5.0 0.38
U 176 -1.08 0.17 115 2,8- 3.3 0.28

49



cdadgcddacacdaacada=z=zz

agadcdaca=

caca

030
057
133
067
098
070
101
118
149
150
163
165
167
172
176

095
075
096
136
155
162

159
160
i73
174

078
091

Groups I & II.

Wind Direction (25°-150°)

.16 0.12 70 9.0-12.6
.18 0.25 105 8.0-11.3
14 0.40 140 4.3- 5.7
.32 0.07 55 7.2- 8.4
.30 0.23 25 6.0~ 7.0
.39 0.10 130 6.4~ 8.3
.23 0.42 105 3.6- 4.9
.33 0.50 90 4,4- 5.3
.60 0.11 125 4,5- 4.8
.36 0.04 125 5.5~ 6.0
.33 0.10 110 3.4- 4,0
.21 0.38 100 5.2- 7.2
.27 0.45 120 2,2- 3.7
.78 0.10 120 4,5~ 5.0
.08 0.17 115 2.8- 3.3
Group ITI. Wind Direction (150°-180°)
.05 0.70 170 6.6- 8.9
.20 0.52 155 5.5- 7.4
.19 0.37 165 6.9- 8.7
.24 0.14 165 3.6- 6.2
.31 0.90 180 2.4~ 3,6
.20 0.80 180 3.7- 5.0
Group IV. Wind Direction (180°-230°)
.66 0.30 190 3.2- 4.0
.92 0.20 230 3.2- 3.9
.13 0.09 200 3.8- 4.5
.68 0.50 235 1.7- 2.4
Group V. Wind Direction (240°-300°)
.04 0.56 285 6.0- 9.0
.17 0.48 275 5.6- 7.8

COO0OO0OOCOO0OOOO0OO0OO0OOO0OO0O
NWNhNMNLOEEPOU UL OoYUT 00

OO NPFTOOOWULUE YO U

19
W



Table 2.3. Characteristics of composite groups. The subscripts C and F refer to values
_computed by Chaplin and Fichtl, respectively. Wind speed given as average
between 18 and 150 m.

Mean Average

Designation Ri %oC Y Direction Speed % Rp R Ro/Ry
at 23 m m m sec“l degrees m sec m

O:N -0.080 0.14 0.90 345 12,2 0.23 1.44 0.79 1.823
0:U -0.803 0.06 0.40 - 5.3 - 0.93 1.90 0.489
I:N -0.160 0.12 0.77 55 10.8 0.23 0.94 1.67 0.563
1:U -0.310 0.06 0.51 - 7.1 - 0.96 0.78 1.231
II:N -0.160 0.27 0.65 120 7.5 0.23 0.94 1.58 0.595
I1:U -0.458 0.26 0.47 - 4.7 - 1.39 0.70 1.986
I& II:N ~0.160 0.21 0.70 90 8.6 0.23 0.94 1.48 0.635
I & IT:U -0.433 0.12 0.43 - 5.1 - 1.31 0.71 1.845
ITI:N -0.050 0.70 0.87 165 7.8 0.51 2.69 0.91 2.956
II1:U -0.228 0.42 0.53 - 5.3 - 1.70 1.18 1.441
IV:N - - - 205 - 0.23 - - -

IV:U -0.848 0.10 0.27 - 3.3 - 1.76 1.75 1.006
V:N -0.040 0.56 0.72 270 7.5 0.65 1.50 1.33 1.128
V:U -0.170 0.48 0.69 - 6.8 - 1.48 1.33 1.113

LAY
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(1) The roughness length determined from a near-neutral wind
profile is more reliable than one obtained from a very
unstable profile because in the latter case the uncertainty
in the gradient Richardson number and hence in Y(Ri) becomes
quite large.

(2) Although there is some scatter of z, in every sector as
revealed in Fig. 2.1, Tables 2.2 and 2.3 indicate that the
roughness length at KSC is independent of stability and
wind speed.

(3) The values of z computed by Fichtl (1968) on a computer and
those computed by Chaplin without the aid of a computer are
most compatible.

(4) Large variations in the value of the gradient Richardson
number nevertheless yield similar values of roughness length
as revealed in Table 2.1.

(5) A value of z, determined from a composite wind profile is
more realistic than a value of z determined from an
individual wind profile because the effects of errors
atcributed to sensors and calculation techniques are
minimized when one uses an "average'" wind profile.

In order to learn more about the transfer mechanisms in the lowest

layers of the atmosphere one may study profiles of temperature and wind.
The stress and heat flux are related to the wind shear and lapse rate by

the equations

(2.3) T pKMSu/BZ

(2.4) H

—pcPKHBG/Bz

where T is the tangential eddy stress, H the upward eddy heat flux, p the
density; KM and KH are the exchange coefficients for momentum and heat,

respectively.
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If both the heat and momentum fluxes are "constant" in the first

60 meters then one may write

/R Ry

(2.5) = -
Kg1/%n1 R,
3] -0 u - u
where Re = 599—:-629 and R = 60 — 30
30 18 U U3 T Ug

For near-neutral conditions KHl/KMlﬁl and thus Re/RuﬂKHZ/KMZ.
Qualitatively, even for unstable conditions, as a first approximation we
may use the preceding relationship. The results are given in Table 2.3;
they are not conclusive, but composite cases 0:N, ITI:N, and V:N do
suggest that KH is greater than KM’ in agreement with previous investiga-
tions. For non-neutral conditions it is probably not proper to form the

ratio RS/Ru because the fluxes are not even approximately constant.

2.2 Approximate theory of diabatic wind profiles up to 150 m

The 150-m tower at Cape Kennedy is sufficiently high to make it
necessary to abandon the assumption of constancy of stress on which the
diabatic wind profile theory is based. 1In order to analyze wind profiles
observed on this tower it is necessary to turn to more comprehensive
theories of the planmetary layer. Several of these theories are available
for neutral stratification, Blackadar (1962, 1965), Lettau (1962) and
Appleby and Ohmstede (1964), and two have been proposed for unstable
stratification by Blackadar and Ching (1965) and Bobileva et al. (1965).
Of the latter two, only Blackadar and Ching's model has been integrated.
These theories are not suitable for curve fitting to observed data because
only numerical solutions have been obtained.

A method of approximating these numerical profiles has been

proposed by Blackadar and Tennekes (1968) and by using the principles
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of asymptotic similarity a method for fitting neutral wind profiles has
been given. The application of this approximation in diabatic
stratification can now be attempted, and this will be described in this
section.

The basic assumption of the method is that the mean wind
direction does not usually change significantly with height within the
lowest 150 meters. The validity of this approximation is demonstrated
by all of the numerical models that have been given, as well as by
numerous observed wind profiles. This assumption serves to a much
greater height than the constancy of stress, which often shows a 30 percent
decrease in the lowest 150 m. If we now define the x—axis to be the
direction of the wind near the ground, the first equation of motion, for

steady-state mean conditions becomes, simply
d du _
(2.6) Az KM iz - fvg

where v_ is the y-component of the geostrophic wind and f is the Coriolis

parameter. This may be integrated with respect to height to give

du 2 z
(2.7) KM iz Ug o, 1 Y)
where Uy is the surface value of the friction velocity and Y satisfies
u 2
*0
(2.8) Y=~ m
g

In order to determine Vg we may impose the result of the theory of

asymptotic similarity

Y& _AW@

u k
*0

(2.9)

where 0 is defined as u*o/fLo° It may be regarded as a bulk Richardson

number for the planetary boundary layer. This result was first predicted
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by Bobileva et al. (1965) in a specialized way. It has since been shown
by Blackadar and Temnekes (1968) that this result is more generally
valid. Under neutral stratification (o =.0), the value of A has been
shown to be about 5. An empirical determination of A(0) has recently
been given by Zilitinkevich and Chalikov (1968), but this is based only
on data for one station. Priestley has also made very recent determina-
tions of the function A(C), but these have not been available for use.

Accordingly we put
(2.10) Y = ku*o/fA(O)
In order to integrate (2.7) to get the wind distribution, it is

necessary to parameterize KM in a suitable way. Panofsky (1961) has

shown that in the constant-stress layer can be predicted by the relation
y P y

1/3
(2.11) K, = (o, 2+ %g—‘pif] g4/3
P

where Y is an empirical coefficient, H is the surface heat flux, and &

is kz. To adapt this expression for use through a non-constant stress
2

layer, it is necessary to replace u, by KM du/dz and to replace & = kz

by

u*o

kz . _
(2.12) L= kz/(l+5ro ’ with AB = ,0063 3

B
which was found to be necessary to describe the flow in the planetary
boundary layer under neutral conditions (Blackadar, 1965).

It may be asked whether £ should depend on the Richardson number
in some way. Such a procedure is not appropriate for two reasons. First,
it appears that near the boundary the significant scale is distance from
the boundary, while in the planetary boundary layer this is always u*olf,
a fact which follows from the equations of motion without any regard

for considerations of stability. Secondly, it can easily be shown that
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within the constant stress layer a variation of % with Richardson number
is equivalent to a change of the value of y. The value of Y that we
shall use, 15 (18 when H is replaced by —chKMBG/SZ), has been
established on the assumption that £ is independent of Richardson number.
Thus it is appropriate to follow the same procedure in extending the
surface layer. Thus, upon extending the definitions of the quantities
in Eq. (2.11) and using (2.3) and (2.12) we find

Yu*o3 1/3

4/3
(2.13) Ky = I<M(g—‘zl)2 T TR
o

kz
1+ X2
B

WhereIk)is the surface Monin length

c pTu*O
(2.14) LO = - —I%aﬁ;———
and H is the turbuleni heat flux at the surface. Here and in the
subsequent discussion we do not take into account any effect of the
change of heat flux in the vertical. There appear to be no experimental
reasons bompelling that such a variation of heat flux needs to be
included in wind profile theories, and it is included for simplicity.
Further assessment of this effect is needed.

Tt will be useful here to replace du/dz in (2.7) and (2.13) by
an equivalent functicn ¢, the so-called universal function defined by
(2.15) o = E &

o]
with the understanding that Uso is to be the value at the surface, as

heretofore. Finally we eliminate KM between Eqs. (2.7) and (2.13) and

obtain the equation

il

4 Yz .3 _ 2,2 63zf, 4
—E— ¢ = -5 a+2E

(2.16) o} ] 2
LO(.L - "Y') 0
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which may be regarded as the appropriate generalization of the KEYPS
equation for the layer of constant wind direction.
Panofsky (1963) has shown that for the constant sfress layer,
the KEYPS equation has a solution of the form
(2.17) ~u = _1_ Q,n_.z_ - lp (...z_.)
u, k z 1L
o o o
and has given a graph of the function wl(z/Lo). The author has shown
elsewhere (Blackadar and Tennekes, 1968) that for neutral stratification
in the constant wind-direction layer, the wind profile may be approximated
by the equation
u _ 1 z zf
(2.18) = = I [san b, ¢ )]

z u
*o o *o

and has given graphs of-the function wz(;E£9 for two of the integrated
%0 .
planetary boundary layer models. For the general diabatic case, the

solution will be represented by the form

v _ 1 Z . 2y -
(2.19) S T K [Rn 2 TG (z,o)]

where Z stands for zf/u*o, and we shall seek those conditions for which
this simple form is valid. One of the questions to be determined is the
form of the unknown fumction wz. Since the form can be predicted for the
neutral case, it is desirable to know to what extent the variation of wz
with stability could be ignored, so as to permit the correction for
stress variations to be applied independently of the correction for
stability.

’Let us now defime the following quantities.
ku*0

a=—_=— = 63

By

(2.20) b =

£Y K 3
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Differentiation of (2.19) with respect to z gives the relation

- 2>
where
= p— —z— ' = - 1 4
(2.22) 6, 1 i v =1 - oz,
where wl' = dwl/d(z/Lo), and
_ - 1
(2.23) 9, = - Zv,
where wz' = sz/az. . Furthermore, ¢1 satisfies the KEYPS equation
. 4 Yz 3
23 - -
(2'-' a) d)l Lo ¢l 1

We now expand Eq. (2.16) in powers of Z, retaining terms in Z

or lower,

' . 2
(2.24) 4¢13¢2 + 60,° - y02(3¢12¢2) - yobz? =

(4a - 2b)Z + (b° - 8ab + 6a)z>
Use has been made of the fact that ¢l satisfies (2.23a), and that (¢1 - 1)
and ¢2 are of order Z at the lowest.

Upon substitution of (2.23) we obtain

(2.25) —p," + 30z, + 62w2'2 + 3yzy," =

(4a - b) + (yob + b2 - 8ab + 632)2
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To a first approximation (equivalent to satisfying the general equation

in ¢ to first order in Z only) we obtain

b2 = -~ (63 -6)2 = - 572

o=

(2.26) wz =~ (a -

Except for the slight dependence of b on ¢, this approximation
to wz is independent of O, and the corrections for stability and height
variation of stress can be made independently. When, however, the
height becomes so large that second or higher order terms in Z have to
be included, wz depends on 0 (both directly and indirectly through wl),
and the two corrections are no longer independent of each other.

It should be noted that, although the value of b depends to some .
extent on stability, the value of wZ/Z to this approximation is not
sensitive to stability variations. Since the function A(0) is not well
known, the dependence of b on 0 will be ignored for the present, and
will not have any significant effect.

The object of wind profile equations such as (2.19) is to
furnish a means of calculating the significant parameters z and Ugo,
which are needed for the parameterization and prediction of other wind
statistics. Therefore, it is necessary to consider how wind profile
observations can be applied to (2.19) for calculating z and Uy It
is also important to determine what errors are inherent in the parameters

]

1
z, and u,

determined by constant-stress layer analysis through the use
of the more common equation

T

Yy z z
(2.27) u = [gn 27 - wl (iTO]
o o

The determination of z and Yo is generally most accurately done
from the two or three lowest levels of observation. Since this is the
case, the approximations used in this section are especially appropriate

for the determination of these parameters. This analysis is greatly
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facilitated by a fortunate coincidence. TIf we consider the product
—wzu*olk which in (2.19) is seen to be the correction to u resulting
from the variation of stress, we find it is independent of Uso and z .
This is fortunate, since it permits the effect to be removed before
the values of the parameters are known. Thus, by the use of (2.19)

and (2.26), we have

57fz Uxo 'z z

and we see that u, is related to the true values of Uso and z by the
same Eq. (2.27) as has usually been applied in the constant stress
technique. Therefore, to obtain the true values of Uso and z_ one
simply subtracts 57fz/k from each observed wind speed and proceeds by
Panofsky's technique to derive the parameters.

When wvalues of zo' have been found by previous analysis, as is
the case in the Cape Kennedy analysis, the corrected values of z, can
be found without reanalysis.

If we eliminate &n z between (2.19) and (2.27) we obtain

2, k Ui 57fz
(2.29) n =2 = 2 (1 -9 -
Zo u*o u* U*O

This equation must be satisfied at all levels. It yields two equations
for the determination of z, and Ugo if we apply it at the same two levels
that have been used for the determination of zo' and u,'. Calling these
levels 1 and 2, we can then eliminate n (zo'/zo) from the two equafions

\
and solve for u*O/u*

u
%o _ . _ 57f
(2.30) o = 0%

Having thus obtainedu*o from the previous estimate u,', one may then apply

(2.29) at either level to get z, from zo'.



65

The values of z, and Uyo that had been determined previously, as
listed in Report 8 were subjected to a redetermination in accordance with
these techniques, and the comparisons are shown in Table 2.4. The average
of the corrected values of z is 32 percent of the original values, while
the average of the corrected values of Uy, is 68 percent of the uncorrected
values. On the basis of other evidence to be given later, it appears that
corrections such as these are required, but may be somewhat too large in

magnitude.
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Table 2.4 Corrected wind profile parameters.

Run No. Zo'(m) zo(m) u,'(m sec 1)
013 0.23 0.16 1.20
020 0.21 0.019 0.49
030 0.12 0.046 0.76
057 0.25 0.13 0.85
067 0.07 0.013 0.57
070 0.10 0.17 0.55
075 0.52 0.25 0.70
078 0.56 0.37 0.72
082 0.12 0.054 0.73
091 0.48 0.24 0.69
095 6.70 0.49 0.87
096 0.37 0.20 0.78
098 0.23 0.070 0.61
101 0.42 0.19 C.45
110 0.06 0.005 0.51
118 0.50 (0) 0.58
121 0.26 0.015 0.45
133 0.40 0.14 0.49
136 0.14 0.18 0.34
149 0.11 (0) 0.40
150 0.04 (0) 0.40
155 0.90 0.23 0.36
159 0.30 0.003 0.36
160 0.20 (0) 0.35
162 0.80 0.24 0.52
163 0.10 0.008 0.34
165 0.38 0.167 0.62
167 0.45 0.104 0.28
172 0.10 0.005 0.38
173 0.09 0.003 0.35
174 0.50 0.017 0.24
176 0.17 (0) 0.28
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III. SPECTRA OF THE HORIZONTAL WIND COMPONENTS

Hans A. Panofsky

3.1 Treatment of fast-response data

Wind speed and direction were originally recorded every one tenth
of a second, and then averaged in groups of 20 (2-second non-overlapping
means). From these quantities, the spoﬁsor computed longitudinal (u)
components along the vector mean wind, and lateral (v) compoments at
right angles. Lines of regression were fitted to u and v, and the
deviations from these lines were treated further by the spomsor. The
computations included kurtosis, skewness, standard deviations and spectral
analyses by the Tukey method. Cross spectra between all pairs of levels
(6 levels, 15 pairs) were computed for like velocity components. All
spectrum analysis was made on the basis of 180 lags, so that spectral and
cross spectral estimates extended from periods of 2 seconds to 720 seconds.
Some experimental group averaging was done on the spectra and cospectra.
Spectra and coherence were computer plotted at The Pennsylvania State

University, with results to be discussed later.

3.2 Theory of the inertial range

Even though the conditions for an isotropic inertial subrange can
be satisfied only for wavelengths much smaller than the height above
ground, spectral shapes of the form typical for the inertial range are
observed for the horizontal velocity components for much longer wavelengths
(Busch and Panofsky, 1968). In particular, u-spectra obey the characteristic
-5/3 law up to wavelengths about five times the height (depending somewhat
on stability and height), and even v-spectra follow the same law up to.
wavelengths more than twice the height. Therefore, spectral characteristics
of the horizontal wind components can be inferred from simple observations
near the ground through the theory of the inertial range; conversely, the

vertical variation of the dissipation can be found from the spectra. Then
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from the energy equation applied close to the ground, we can obtain
surface stresses and roughness lengths.

The one-dimensional spectrum in the inertial subrange can be
written (see, e.g., Lumley and Panofsky, 1964):

(3.1) S(k) = ac2/3 373

Here, a represents a constant, which has a value 0.14 for the
longitudinal spectrum, and 0.18 for the lateral spectrum; k is the
wave number in cycles per unit length; and € is the dissipation rate of
the turbulent kinetic energy. We now define ¢€ as 0.4z€/u*3, where u,
is the local friction wvelocity, and apply Taylor's hypothesis.

According to Taylor's hypothesis (see, e.g., Lumley and Panofsky,
1964), local Eulerian fluctuations of a variable with time can be
interpreted to be due to variations of that variable along the mean wind
direction, being swept past the observer with mean wind speed V. If the
fluctuations are just due to a simple translation (frozen wave hypothesis),
we can replace the wave number k in Eq. (3.1) by n/V, where n is the
frequency. Similarly, the quantity kS(k) (the variance produced by unit
logarithmic wave number interval) then equals nS(n), which measures the
variance produced in unit logarithmic frequency interval, since d(&n n) =
d(n k).

Several experiments, quoted in the above reference, have shown
that Taylor's hypothesis is particularly well satisfied at high frequencies.
We can then put Eq. (3.1) into the form (subscript zero stands for

surface values):

2 €
u

(3.2) nS(n) . 4 2/3 £2/3 [ u, ]2
c *0

Uy

In this equation, f is a nondimensional frequency nz/V, where z is

height, and C is a constant equal to 0.26 for longitudinal spectra, and

0.34 for lateral spectra.
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We will now define a quantity X by:

_ . 2/3 2
(3.3) X =94 (u*/u*o)
X is the value of nS(n)/u*OZC at £ = 1. It varies with height, but is
independent of frequency. The variation of X with height and stability
can be understood from the budget of turbulent kinetic energy:

(3.4) dE _ 23V . 88 L5 _po_ ¢

dc * 3z c pT
p
Here, g is gravity, H the vertical heat flux, cp the specific heat at
constant pressure, p the air demnsity, and T the temperature; E is the
mean turbulent kinetic energy per unit mass, and D the vertical
divergence of the vertical energy flux produced by turbulence, and P
is a term describing work done against the fluctuating pressure forces.
We assume that the energy is in equilibrium, thar the pressure

term is unimportant, and that only the vertical shear of the mean wind
is large enough to produce energy; then, the energy equation takes the
form (after normalizing by u*o3/0.4z):

u 3
(3.5) x3/2 = [px/L) - 2/L - D) ——

Uso
Here, ¢ is the nondimensional wind shear (O.4z/u*)(dV/dz), and D the
normalized energy flux divergence. L is the Monin-Obukhov length
(u*3chT)(kgH). The behavior of D is uncertain; Busch and Panofsky (1968)
have brought together evidence that D is unimportant under all conditions.
On the other hand, observations from Brookhaven (Panofsky, 1962) suggest
that flux divergence is positive and may cancel z/L in unstable air.
But even for these data, D approaches zero in neutral air. In neutral
air, therefore, X will most likely tend toward unity as the ground is
approached. Recently, Businger (unpublished) has suggested that, in

unstable air, D is small above a certain height.
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It will be seen that the observed variation of X with height is
consistent with the hypothesis that D is unimportant in unstable air

(at 30 m and above). We can then write Eq. (3.5) in the form:

u,[3 ” 2 2/3
(3.6) o - T

u
*0 o

where Lo is the wvalue of L computed with LI The quantity Lo can be
obtained from Businger's hypothesis (see Deardorff, 1968) that, at low

levels in unstable air,
(3.7) z/L = Ri

If we make the reasonable assumption that L is constant below 23 m, we

can compute L0 by:

(3.8) Lo = 23m/R123
where Ri23 is the Richardson number at about 23 m, computed from the
observed winds and temperatures at 30 m and 18 m.

The quantity z/Lo can be considered as the Richardson number at
23 m, extrapolated upwards linearly to height z. This quantity will

also be called Ri_ £ the "effective" Richardson number at height z.

This quantity is jidged to be a better indicator of the relative importance
of convective and mechanical turbulence at level z than the measured
Richardson number for two reasons: first, both numerator and denominator

in Ri become small at high levels so that estimates of Ri become erratic;
and second, Ri often changes sign around midtower height, even though

the heat flux is still upward and convective turbulence is-important.

Since the quantity u*/u*o differs significantly from unity only at

considerable height, where, in unstable air, ¢(z/L) is much smaller
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numerically than z/L, (u*/u*o)3 can generally be taken as unity. Only
in near neutral air, will the decrease of stress with height cause a
gradual decrease of X with height.

If we accept Businger's expression for the diabatic wind
profile (see Deardorff, 1968), that

(3.9) ¢ = (1 - 18 z/1) /4
we obtain for X:
(3.10) X = [(1-18 z/L) /4 _ z/Lo]2/3

Figure 3.1 is a graph of vX as function of z/L0 in unstable air
based on Eq. (3.10), which therefore also represents the wvariation of
the spectra with height at £ = 1. Since ¢ is important only for small
z, L has been replaced by Lo' Thus, the spectra at £ = 1 at first
decrease slightly with height, and then increase. TFor large z/L, X
varies as z2/3. This is the condition when buoyant energy production
is balanced by dissipation.

In neutral air, of course, X will slowly decrease upward from
one at the ground. 1In all cases then, X should apprecach one as the

ground is approached. Since, by definition, the spectra for u and v

are of the form:

-2/3

(3.11) CXf

the above expressions for X make it possible to estimate the spectra to
considerable heights, provided that the vertical flux of enthalpy can

be taken as a constant, and provided the undetermined factor u*/u*o does
not become important. At 18 m, Fichtl finds that the observations of €

are better explained by assuming that ¢€ = ¢(z/L) implying that buoyant
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Figure 3.1 Theoretical relation of VX to effective Richardson number.
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production and flux divergence cancel here, in agreement with Businger's

ideas.

3.3 Observed characteristics of subrange spectra

In practice, some of the above ideas were tested by studying the
characteristics of X = nS(n)/Cu*o2 at £ = 1. The computation of this
quantity required first an estimate of Uy, which was determined from the
wind at 18 m, and a roughness length previously determined for that wind
direction (Chapter II). Then, X was determined from a computer plot of
the spectra on log-log paper, interpolating or extrapolating to f = 1.

1/2

Figure 3.2 shows the dependence of X on height for the
u-component in two typical situations with different stability. 1In
general, such curves are nearly vertical in near-neutral air, and slope
toward the upper right in unstable air. The observations above 18 m
are well satisfied by Eq. (3.6). However, the value of X at 18 m tends
to be significantly lower than a smooth curve drawn through the other
data. This characteristic can be understood if, as suggested previously,
the flux divergence is important at 18 m but not at the Higher levels,
as suggested by Businger.

Smooth curves were drawn through the points above 18 m and
extrapolated downward to the surface. Here, the value of X goes to one
according to Eq. (3.6). The actual values often departed significantly
from unity. If we assume that the spectra are of good quality, it
follows that the roughness estimated previously from the wind profiles
was wrong. This is quite possible, because roughness determinations
should be made from wind profiles at levels lower than here available.
For this reason, roughness values were recomputed so as to make the
limiting value of X at the ground equal to one.

Table 3.1 shows the roughness lengths originally computed as
well as the values needed to make X equal to one, at the ground. 1In
many cases, the revised roughhess lengths are substantially lower than

those determined from the wind profiles. This change is in the right
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Table 3.1 Roughness lengths computed from wind profiles and spectra.

Run No. Wind Direction Original z, Revised z,
degrees m m

13 10 0.23 0.05
141 40 0.07 0.07
67 55 0.07 0.03
30 70 0.12 0.02
165 100 0.38 0.14
101 105 0.42 0.39
163 110 0.10 0.10
176 115 0.17 0.16
149 125 0.11 0.06
139 136 0.35 0.11
133 140 0.40 0.14
162 180 0.80 0.35
155 180 0.90 0.40
142 210 0.10 0.02
91 275 0.48 0.33
121 335 0.26 0.26

77
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direction according to Blackadar (personal communication). Second, some
preliminary estimates suggest that the revised roughness lengths are
more nearly consistent with the observations of standard deviations of
u and v than the original roughness lengths.

In order to test Eq. (3.6), Lo was computed by assuming that the
Richardson number computed from winds and temperatures at the lowest two
levels equals z/Lo at the geometric mean of these two heights. Then, X
was computed from Eq. (3.6) (Fig. 3.1), and plotted as function of height
on log-log paper. This was compared with the observed variation of X with
height. Since the observed and computed values of X could differ by a
constant factor (depending on the ratio of revised to original roughness
length), the theoretical line was shifted sideways until the best fit
to the observed spectra is obtained. However, u-spectra and v-spectra
were assumed to have the required 4/3 ratio. Figure 3.3 shows these
fits. Clearly, Eq. (3.6) predicts the behavior of X with height quite
well. Also, the assumption of isotropy is consistent with the
observations.

There are only one or two exceptions in unstable air, where
presumably the stability parameter is in error. Also, the vertical
variation is not well matched on the stable side where ¢€ has been taken
as 1 + 9 Z/Lo' Here one would not really expect surface layer
approximations to be valid above a few meters because the turbulence
structure fails to produce sufficient coupling between the lower and
upper levels.

In order to remove the effect of the uncertain constant factor,
ratios of the spectra at £ = 1 at 120 m and 30 m were formed, and
compared with ratios of these spectra computed from Eq. (3.6). The
result is shown in Fig. 3.4. Here, the agreement is good.

In summary, it appears then that Eq. (3.6), which is based on
the eddy energy equation without flux divergence, well accounts for the
vertical variation of the spectra, although it does not explain their

absolute values, unless the roughness lengths are adjusted.
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Given the adjusted roughness_lengths, estimates of the inertial
portion of the spectra in the inertial range can now be hased on Eq. (3.7).
First, the surface stress is obtained from a low-level wind and a
stability correction in the usual manner. Then, the Richardson number
computed from the lowest two winds is assumed to be equal to z/Lo; and X
is found from Eq. (3.6) or Fig. 3.1. These estimates will be high for
near neutral air for cases at high levels. Otherwise, such estimates
appear to be valid up to 150 m in unstable air, and at lower levels in
neutral and slightly stable air.

Since spectral estimation as discussed in this report has
concentrated entirely on the inertial range, it is important to determine
up to what frequency the -5/3 slope is valid. For a large number of runs
values of f = nz/V were estimated by eye up to which this simple power
law could be assumed. Figure 3.5 shows this limiting value, denoted by
fb’ plotted as function of height z and L. In addition to observations
from Cape Kennedy, the graph contains data obtained at the 300-m tower
at Obninsk by Volkovitskaya and Ivanov (1967).

It is clear that f, increases with height, but more slowly than

b
linearly, so that the limiting wavelength also increase upward. Further,

the value of f, is smaller in unstable than in stable air; but the

detailed variazion with L is rather irregular, or rather "noisy". With
many more observations, a definite relation between average fb and
average stability could be established. Generally, the Russian
observations are quite compatible with those obtained by Cape Kennedy.

In all but the most stable air, the inertial range seems to be
valid up to wavelengths of about 100 m at z = 25 m; and to 200 m at z =
100 m. Sometimes, the ~5/3 law seems to be valid to much longer

wavelengths; the reason is not known.
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IV. THE RELATION BETWEEN WIND COMPONENTS AT DIFFERENT HEIGHTS

Hans A. Panofsky

4.1 Theory

The spectral characteristics of the relationship between wind
components at two heights are described by the cospectrum and the
quadrature spectrum. We have already seen how these statistics were
evaluated, between all pairs of levels available. However, so far,
only like components at each pair of heights have been related to each
other. TFrom the cospectra and quadrature spectra (normalized by the
spectra themselves), two new statistics, which are functions of the

frequency n, can be computed; the coherence:
(4.1) coh(n) = c2(n) + q>(n)

and the eddy slope s:

(4.2) s(n) = [arc tan(g/c)/2TAf

here, ¢ and q (lower case) represent cospectra and quadrature spectra,
respectively, normalized by the geometric mean of the corresponding

spectra at the same frequency, at the two levels. Af is defined by:
(4.3) Af = nAz/V

where n is the frequency, V the average wind in the layer analyzed, and
Az the separation between the upper and lower levels. If Taylor's
"frozen wave" hypothesis is valid, Af represents the ratio of vertical
separaffion to horizontal wavelength.

The quantity g, the "eddy slope" is the ratio of space delay
between a signal reaching the two heights, and Az. Thus, a small value

of s represents a nearly vertical eddy and vice versa.
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It turns out that s(n) and coh(n) have simpler properties than
c(n) and q(n). It is therefore suggested that the slope and the
coherence be estimated as function of mean variables, and that q(m) and

c(n) be computed by solving Eqs. (4.1) and (4.2) for them:

(4.4) g(n) = Ycoh(n) sin(2msAf)
(4.5) c(n) = Yecoh(n) cos(2msAf)

4.2 Analysis and estimation of coherence

As was suggested originally by Davenport (1961) there exists a
kind of geometrical similarity in the lower atmosphere such that the
coherence has relatively simple properties if analyzed as function of
Af rather than simply n. This means that an "eddy" with horizontal
wavelength 1 km has the same sort of coherence when Az is 100 m as an
eddy of wavelength 500 m for a separation of 50 m.

Therefore, many graphs were constructed by computer, giving the
relationship between coherence and Af. An example is given in Fig. 4.1.
Here, on the same graph coherences from many height combinations are
analyzed. Apparently, the coherence is independent of height br of
height interval Az. However, comparison of many such graphs shows a
variation with stability in the sense that, other things being equal,
the coherence increases with decreasing stability. There also seem to
be systematic differences between locations, which are not yet understood.

All of the coherence~Af graphs have considerable, but unsystematic
scatter. Within the apparently random variations of the individual
points, simple exponential functions appear to fit the graphs. Therefore,
the graphs were plotted on semilog paper, and straight lines were fitted

by eye. Equations for these lines were then written in the form:

(4.6) coh(n) = exp(-.693Af/Af0.5)
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The quantity AfO.S is a constant for each line, which represents the
value of Af when the coherence drops to 0.5. This quantity is,
presumably, a function of stability, and perhaps other factors such as
terrain roughness or other topographic features, 0f course, once AfO.S
is given, coherences can then be estimated from Eq. (4.6).

At first, the hypothesis was tested that coherence depends on
the "power" of the wind profile, d(log V)/d(log z), which is known to
depeﬁd on stability, height and roughness. The results were disappointing,
and are not given here.

Figures 4.2 and 4.3 give the relation between f0.5 and Rieff’
the effective Richardson number for the longitudinal and lateral wind
components, respectively. As we noted earlier, this quantity is the
Richardson number extrapolated linearly from a value computed close to
the ground'(see Chapter III). Observations from many sources are brought
together in these figures. For the observations at the Brookhaven
Laboratory, no satisfactory Richardson numbers were given; instead, the
observations were classified according to the Brookhaven gustiness
clasgification. This information was converted into Richardson number
according to a recipe concocted by Pries (unpublished), Some fast-wind
observations were assumed to be associated with zero Richardson number.
Apparently, not all observations can be fitted by a single line. Two
lines were drawn on each graph; one for the observations for Cape
Kennedy, the other for all the remaining data. Why the coherences in
unstable air at Cape Kennedy are significantly lower than elsewhere (as
indicated by the graphs) is not clear. One might suspect an error of
computation, but none was found in spite of thorough checking. 1In stable
and neutral air, the agreement between sites is fairly good; coherence
effectively disappears for a Richardson number between 0.25 and 0.50,
in agreement with other estimates of the "critical" Richardson number.

In general, coherences of u- and v-components are not greatly
different from each other, with slightly larger coherences indicated for
lateral components in unstable air. Altogether, then, Figs. 4.2 and 4.3

along with Eq. (4.6) permit estimation of coherences at the locations
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included in the graphs. As input, one would need two winds and two
temperatures below 30 m or so. From these, Richardson numbers would be
;omputed and vertically extrapolated to the geometric mean of two heights
in question; the mean wind in the layer between these heights required
in the computation of Af can be estimated with sufficient accuracy by
linear extrapolation or interpolation of the two low-level winds on a
graph with a logarithmic height scale. Probably almost equally good

estimates of Af are possible by use of Pasquill's stability classes

0.5
(Pasquill, 1962) instead of Richardson numbers.

Finally, all the coherence graphs indicated a great deal of
scatter, suggesting that the coherence estimates are not very precise.

In fact, for Af > 0.12, the coherence can be regarded as negligible.

4.3 Analysis and estimation of slope s

A program was developed which fitted parabolae of the form:

(4.7) vyv=1-ax + bx2

to the cospectra and

(4.8) y = ¢cx - dx2

to the quadrature spectra, where a, b, ¢ and d are constants. Some of
the results were machine-plotted and appeared to fit the observatioﬁs
reasonably well. From these parabolae, slopes were computed at f = 0.05
and £ = 0.10.

First, the slopes at f = 0.05 were analyzed with respect to
height and Richardson number. Only systematic changes with height were
found. Thus, for the u-components, the average slope s was 0.7 when
all observations were at or below 90 m. For all observations at or above
that level, the average was Q.5.

The slopes for the v-components are much larger than those of

the u-components not only at Cape Kennedy, but also at three other sites.



91

The average slope from combinations of v-components at 18 m with
v-components at 30 m and 60 m is 1l.7; slopes between 30 m and 90 m
average 1.4, but slopes involving v-components only at 90m and higher
levels average only 0.55. At present, the difference between the slopes
in the two lower layers can hardly be judged significant; but the change
to lower values above 90 m certainly is. Perhaps, for the time being,
it would be justified to use s = 0,7 and s = 1.5 for the u- and v-
components, respectively, below 90 m, and slopes of 0.5 above that level
for both components. "
The difference between slopes at £ = 0,10 and at 0.05 was also
analyzed as function of effective Richardson number. The result, with
some observations from White Sands added, is given in Fig. 4.4. Each
point represents an average in a given class of Richardson numbers.
Except for some u~components during stable periods, there is no
significant difference at the two frequencies. Therefore, for the time
being, it is recommended to assume that the slopes s for u and v are

independent of frequency.
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